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ABSTRACT

An efficient “one-pot” selective functionalization at C3/C6 of imidazo[1,2-a]pyrazines has been developed via a palladium-catalyzed sequential
Suzuki�Miyaura cross-coupling/direct C�H arylation, vinylation, and benzylation. The procedure remains effective in the presence of a methyl
thioether group at C8, which may in turn be successfully engaged in a cross-coupling method to afford 3,6,8-trisubstituted imidazo[1,2-a]-
pyrazines. This work paves the way for the design of biologically relevant compounds in an imidazo[1,2-a]pyrazine series.

One of the most important challenges in organic synth-
esis is to synthesize efficiently complex molecular struc-
tures from trivial compounds. Thus, the development
of multistep sequences in a single flask, such as tandem,
cascade, or sequential reactions, has been the focus of
much attention in the organic chemistry community.1 A
number of advantages of these processes are extremely
attractive for synthetic chemists and pharmaceutical com-
panies, such as the reduction of cost, time, and waste. One
of the most appealing aspects of this strategy is to produce
a large molecular diversity and to introduce a wide degree
of complexity in a single transformation. In this context,

transition-metal-catalyzed C�H bond activation has re-

cently emerged as a powerful tool that may be advanta-

geously associated with more commonplace cross-coupling

methods to develop one-pot sequential functionalization

of various relevant fused heterocycles.
The imidazo[1,2-a]pyrazine is an important pharmaco-

phore prevalent in a number of biologically active mole-
cules,2 such as acid pump antagonists,2c kinase aurora
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inhibitors,2e and phosphodiesterase inhibitors.2f Several
procedures for transition-metal-catalyzeddirectC�Hfun-
ctionalizationof imidazoazines havebeendeveloped, notably
in the imidazo[1,2-a]pyridine3 and imidazo[1,2-a]pyrimidine4

series. Remarkably, Guillaumet et al. have described the
first sequential functionalization of imidazo[1,2-a]pyridines
by implementing Suzuki�Miyaura and direct C�H cross-
coupling reactions.3b However, the imidazo[1,2-a]pyrazine
series remains almost unexplored since only one paper
reporting on the palladium-catalyzed direct C�H aryla-
tion at C3 of the naked imidazo[1,2-a]pyrazine skeleton
with iodobenzenewasrecentlydisclosedbyChatani.5Among

the available imidazo[1,2-a]pyrazine scaffolds, the readily

prepared 6-bromoimidazo[1,2-a]pyrazine flanked with a

methyl ether (1a) or a methyl thioether (1b) group at C8

position6 represent attractive candidates for sequential

coupling reactions.3b,7 Herein, we report an efficient proce-

dure for the sequential functionalization of 6-bromoimidazo-

[1,2-a]pyrazine 1a and 1b at C3/C6 positions through a

palladium-catalyzed one-pot Suzuki�Miyaura�direct CH

cross-coupling sequence. To the best of our knowledge, this

work constitutes one of the rare successful palladium-

catalyzed direct C�H functionalization conducted in the

presence of a sulfide group8 which could act as a poison of

palladium catalyst.9

Our study was initiated with the Suzuki�Miyaura cou-
pling reaction between 1a and phenylboronic acid under a
palladium-based catalysis in the presence of Pd(OAc)2/
PPh3 andCs2CO3 base in dioxane at 90 �C (Table 1). These
conditions previously proved to be effective in the direct
C3-H arylation of imidazoazines.4a The complete conver-
sion of the reaction (monitoring byGC�MS)was attained

within 3 h, and the expected 6-phenylimidazopyrazine 2a
was further isolated in quantitative yield (entry 1). The first
sequential selectiveC6-Br/C3-Hdouble arylationwas then
carried out by simply adding bromobenzene in the wake of
the initial Suzuki�Miyaura cross-coupling reaction. The
resulting reaction mixture was then stirred for a further
18hwhile raising the temperature to120 �C.Pleasingly, the
expected diarylated imidazopyrazine 3aa was obtained in
fairly good 67% isolated yield (entry 2), along with a 20%
yield of the monoarylated intermediate 2a. This prelimin-
ary result is all the more interesting as no further addition
of palladium catalyst is required for the subsequent C3-H
functionalization step.

A survey of different phosphines (entries 3�6) revealed
that 2-(dicyclohexylphosphino)biphenyl (CyJohnPhos)
displayed the best performance, providing the expected
diarylated imidazopyrazine 3aa in 95% isolated yield
(entry 6). Interestingly, no significant drop of the yield
(85%)was observedwhen using a catalyst loading as low
as 5 mol % (entry 7). When the reaction was performed
in the presence of K2CO3, diarylated imidazopyrazine 3aa
was obtained with a somewhat lower yield (63%) together
with the monoarylated imidazopyrazine 2a (23%), point-
ing out the superiority of Cs2CO3 in the C�Hbond activa-
tion step (entry 8).
The scope and limitation of this Suzuki�Miyaura cross-

coupling/C3�H bond activation sequence was then inves-
tigated using the optimized procedure; namely Pd(OAc)2
(5mol%),CyJohnPhos (10mol%),Cs2CO3 (5.0 equiv) in
dioxane byusing various arylboronic acids andaryl halides
(Table 2).

Table 1. Optimization of Reaction Conditionsa

entry ligand base yieldc (%) of 1a/2a/3aa

1b PPh3 Cs2CO3 0/99/0

2 PPh3 Cs2CO3 0/20/67

3 Po-Tol3 Cs2CO3 0/50/47

4 PtBu3 3HBF4 Cs2CO3 0/20/66

5 PCy3 3HBF4 Cs2CO3 0/70/20

6 CyJohnPhos Cs2CO3 0/0/99 (95)d

7 CyJohnPhose Cs2CO3 0/0/87 (85)d

8 CyJohnPhose K2CO3 0/23/68 (63)d

aReaction conditions:Amixture of 10mol%ofPd source, 20mol%
of phosphine ligand, 0.2 mmol of 1a, 1 equiv of PhB(OH)2, and 5 equiv
of base in 1mLof dioxanewas heated to 90 �C for 3 h, and then 1.5 equiv
of bromobenzene was added and the resulting mixture was heated to
120 �C for a further 18 h. b 10 mol % of Pd source, 20 mol % of phos-
phine ligand, 0.2mmol of 1a, 1 equiv of PhB(OH)2, 5 equiv of base, 1mL
of solvent, 90 �C. cYields determinated by NMR and GC analysis with
internal standard. d Isolated yields of 3aa. e 5 mol % of Pd source and
10 mol % of ligand were used.
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As first observations, good to high yields of imidazopyr-
azine 3a were obtained with a large range of arylboronic
acids and aryl halides bearing either electron-donating or -
withdrawing groups (entries 2�11). However, Suzuki�
Miyaura cross-coupling reactions of 1awith commercially
available heteroarylboronic acids failed to give the desired
cross-coupling product under these conditions (entries
17�19). Gratifyingly, the challenging palladium-catalyzed
direct C3-H functionalization appeared to be efficient with
both 4-iodoanisole and 4-choroanisole (entries 3 and 4) as
well as heteroaryl bromides (entries 8 and 12).
More importantly, subsequent to the Suzuki�Miyaura

coupling reaction, direct C�H vinylation and benzyla-
tion could be successfully achieved using various vinyl
bromides and benzyl chloride as electrophiles, affording
3ak�am in fair yields (entries 13�16). In addition, the
survival of the palladium during C3�H arylation of 2a
flanked with a sulfide function (entry 10) encouraged us to
explore the scope of this sequential C6-Br/C3-H cross-
coupling method further with a structural analogue of 1a,
namely the 6-bromo-8-methylthioimidazo[1,2-a]pyazine
1b (Table 3). After checking that the initial Suzuki�
Miyaura cross-coupling step afforded 6-phenylimidazo-
pyrazine 2b in a quantitative yield (entry 1), we were

pleased to observe the formation of the desired diarylated
imidazopyrazine 3ba, albeit in amodest 30% yield, when the
imidazopyrazine 1b was subjected to the whole reaction
sequence (entry 2). This preliminary result could be signifi-
cantly improved when 10 mol % of catalyst was used,
producing 3ba in a fair 62% yield (entry 3). With the
optimized conditions in hand, we then exemplified this one-
pot diarylation process with a variety of arylboronic acids
and aryl halides, providing a novel library of 3,6-diarylated
8-methylthioimidazopyrazines 3b (entries 4�11). In only one
case, we found that subsequent to the Suzuki�Miyaura
cross-coupling reaction between 1b and the electron-rich
4-methoxyphenylboronic acid, the resulting monoarylated
product 2b failed to undergo C3�H arylation with bromo-
benzene (entry 10). However, the desired diarylated imida-
zopyrazine 3bh could be formed in a modest 30% yield by
using themore reactive iodobenzene (entry 11). In contrast to
6-bromo-8-methoxyimidazopyrazine 1a, attempts to achieve
arylation/C�H vinylation or benzylation sequences from the
8-methylthioanalogue1bprovedunfruitful (entries12and13).
We finally took advantage of the presence of the methoxy

and methylthio groups at C8 in both imidazopyrazines 3ad
and 3bb, respectively, to implement an additional cross-
coupling reaction which aimed at providing straightforward
access to trisubstituted imidazopyrazines (Scheme 1). Thus,
by applying a previously reported nickel-catalyzed cross-
coupling method,10 the triarylated imidazopyrazine 4 was

Table 2. Synthesis of Compounds 3aa

entry R1 R2X product

yieldb

(%)

1 Ph PhBr 3aa 93

2 4-MeOC6H4 PhBr 3ab 89

3 4-MeOC6H4 PhCl 3ab 81

4 4-MeOC6H4 PhI 3ab 90

5 4-FC6H4 PhBr 3ac 73

6 3-CF3C6H4 4-Me2NC6H4Br 3ad 81

7 4-Me2NC6H4 4-ClC6H4Br 3ae 56

8 Ph 2-bromo-6-methoxypyridine 3af 63

9 Ph 4-NCC6H4Br 3ag 90

10 Ph 4-MeSC6H4Br 3ah 81

11 Ph 3-MeO2CC6H4Br 3ai 71

12 Ph 3-bromothiophene 3aj 30

13 Ph BnCl 3ak 65

14 Ph 1-bromo-2-methylpropene 3al 66c

15 Ph 1-chloro-2-methylpropene 3al 65c

16 3-NO2C6H4 2-bromopropene 3am 60c

17 4-Pyd

18 2-thienyld

19 2-benzofuranyld

aReaction conditions: A mixture of boronic acid (1 equiv), 1a
(0.5 mmol, 1 equiv), Pd(OAc)2 (0.05 equiv), CyJohnPhos (0.1 equiv),
andCs2CO3 (5 equiv) in 2.5mL of dioxanewas heated to 90 �CunderN2

for an appropriate time after which R2X (1.5 equiv) was added, and the
resulting mixture was heated to 120 �C for a further 18 h. b Isolated
yields. c 3 equiv of R2Xwere used. dThe Suzuki coupling does not occur.

Table 3. Synthesis of Compounds 3ba

entry R1 R2X product

yieldb

(%)

1 Ph 2b 98

2c Ph PhBr 3ba 30

3 Ph PhBr 3ba 62

4 Ph 3-NCC6H4Br 3bb 66

5 Ph 3-MeOC6H4Br 3bc 61

6 3-CF3C6H4 3,4-MeC6H3Br 3bd 73

7 3-ClC6H4 4-MeC6H4Br 3be 65

8 4-EtO2CC6H4 PhBr 3bf 72

9 3-O2NC6H4 PhBr 3bg 65

10 4-MeOC6H4 PhBr 0d

11 4-MeOC6H4 PhI 3bh 30

12 Ph 1-bromo-2-methylpropene 0d

13 Ph BnCl 0d

aReaction conditions:Amixture of boronic acid (1 equiv),1b (0.5mmol,
1 equiv), Pd(OAc)2 (0.1 equiv),CyJohnPhos (0.2 equiv), Cs2CO3 (5 equiv) in
2.5 mL of dioxane was heated to 90 �C under N2 for appropriate time after
which R2X (1.5 equiv) was added, and the resulting mixture was heated to
120 �Cfora further18h. b Isolatedyields. cReactionperformedwith5mol%
of Pd(OAc)2.

dOnly the Suzuki coupling product was isolated.
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Z.-X. Chem.;Eur. J. 2011, 17, 4972–4975.
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isolated in 77% yield from its corresponding 3,6-diarylated
methyl ether imidazopyrazine precursor 3ad. Pleasingly, the
palladium- and copper-catalyzed cross-coupling of hetero-
aromatic thioethers and boronic acids previously reported by
Liebeskind11 has been successfully applied to compound 3bb

and4-methoxyphenylboronic acid, affording the3,6,8-triary-
lated imidazopyrazine 5 in 64% yield.
In summary, anoriginal two-step single flask palladium-

catalyzed Suzuki�Miyaura cross-coupling/direct C�H fun-
ctionalization sequence has been developed from the readily
available 8-methoxy- or 8-methylthio-6-bromoimidazo-
[1,2-a]pyrazines 1a and 1b, allowing the straightforward
functionalization at both the C3 and C6 positions of these
readily available imidazopyrazine scaffolds. In addition,
facile access to 3,6,8-trifunctionalized imidazo[1,2-a]pyrazines
was also demonstrated by implementing a third cross-
coupling reaction. This sequential cross-coupling approach
supplies a large range of mono-, di-, or trifunctionalized
imidazo[1,2-a]pyrazines being potentially pharmaceutically
relevant heterocyclic products. Furthermore, this work
reports one of the few examples of palladium-catalyzed
direct C�H arylation with heteroaryl halides bearing a
sulfide group.
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Scheme 1. Access to 3,6,8-Triarylated Imidazo[1,2-a]pyrazines
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